Copied to
clipboard

?

G = C2×C23.23D10order 320 = 26·5

Direct product of C2 and C23.23D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C23.23D10, C24.70D10, (C23×C4)⋊4D5, (C23×C20)⋊4C2, (C22×C4)⋊43D10, (C2×C20).704C23, (C2×C10).287C24, (C22×C20)⋊56C22, (C22×C10).205D4, C10.133(C22×D4), C23.91(C5⋊D4), C23.D555C22, D10⋊C441C22, C22.82(C4○D20), C10.D444C22, C104(C22.D4), (C23×D5).74C22, C23.233(C22×D5), C22.302(C23×D5), (C23×C10).109C22, (C22×C10).416C23, (C2×Dic5).149C23, (C22×D5).125C23, (C22×Dic5).161C22, C2.70(C2×C4○D20), C10.62(C2×C4○D4), C2.6(C22×C5⋊D4), C55(C2×C22.D4), (C2×C10).574(C2×D4), (C2×C23.D5)⋊22C2, (C2×D10⋊C4)⋊13C2, (C2×C10.D4)⋊18C2, (C2×C4).657(C22×D5), (C22×C5⋊D4).13C2, C22.103(C2×C5⋊D4), (C2×C10).113(C4○D4), (C2×C5⋊D4).144C22, SmallGroup(320,1461)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C23.23D10
C1C5C10C2×C10C22×D5C23×D5C22×C5⋊D4 — C2×C23.23D10
C5C2×C10 — C2×C23.23D10

Subgroups: 1118 in 342 conjugacy classes, 127 normal (17 characteristic)
C1, C2, C2 [×6], C2 [×6], C4 [×10], C22, C22 [×10], C22 [×22], C5, C2×C4 [×4], C2×C4 [×24], D4 [×8], C23, C23 [×6], C23 [×12], D5 [×2], C10, C10 [×6], C10 [×4], C22⋊C4 [×12], C4⋊C4 [×8], C22×C4 [×6], C22×C4 [×7], C2×D4 [×8], C24, C24, Dic5 [×6], C20 [×4], D10 [×10], C2×C10, C2×C10 [×10], C2×C10 [×12], C2×C22⋊C4 [×3], C2×C4⋊C4 [×2], C22.D4 [×8], C23×C4, C22×D4, C2×Dic5 [×6], C2×Dic5 [×6], C5⋊D4 [×8], C2×C20 [×4], C2×C20 [×12], C22×D5 [×2], C22×D5 [×6], C22×C10, C22×C10 [×6], C22×C10 [×4], C2×C22.D4, C10.D4 [×8], D10⋊C4 [×8], C23.D5 [×4], C22×Dic5, C22×Dic5 [×2], C2×C5⋊D4 [×4], C2×C5⋊D4 [×4], C22×C20 [×6], C22×C20 [×4], C23×D5, C23×C10, C2×C10.D4 [×2], C2×D10⋊C4 [×2], C23.23D10 [×8], C2×C23.D5, C22×C5⋊D4, C23×C20, C2×C23.23D10

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×4], C24, D10 [×7], C22.D4 [×4], C22×D4, C2×C4○D4 [×2], C5⋊D4 [×4], C22×D5 [×7], C2×C22.D4, C4○D20 [×4], C2×C5⋊D4 [×6], C23×D5, C23.23D10 [×4], C2×C4○D20 [×2], C22×C5⋊D4, C2×C23.23D10

Generators and relations
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=d, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 52)(2 53)(3 54)(4 55)(5 56)(6 57)(7 58)(8 59)(9 60)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 86)(22 87)(23 88)(24 89)(25 90)(26 91)(27 92)(28 93)(29 94)(30 95)(31 96)(32 97)(33 98)(34 99)(35 100)(36 81)(37 82)(38 83)(39 84)(40 85)(61 116)(62 117)(63 118)(64 119)(65 120)(66 101)(67 102)(68 103)(69 104)(70 105)(71 106)(72 107)(73 108)(74 109)(75 110)(76 111)(77 112)(78 113)(79 114)(80 115)(121 158)(122 159)(123 160)(124 141)(125 142)(126 143)(127 144)(128 145)(129 146)(130 147)(131 148)(132 149)(133 150)(134 151)(135 152)(136 153)(137 154)(138 155)(139 156)(140 157)
(1 83)(2 84)(3 85)(4 86)(5 87)(6 88)(7 89)(8 90)(9 91)(10 92)(11 93)(12 94)(13 95)(14 96)(15 97)(16 98)(17 99)(18 100)(19 81)(20 82)(21 55)(22 56)(23 57)(24 58)(25 59)(26 60)(27 41)(28 42)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(61 138)(62 139)(63 140)(64 121)(65 122)(66 123)(67 124)(68 125)(69 126)(70 127)(71 128)(72 129)(73 130)(74 131)(75 132)(76 133)(77 134)(78 135)(79 136)(80 137)(101 160)(102 141)(103 142)(104 143)(105 144)(106 145)(107 146)(108 147)(109 148)(110 149)(111 150)(112 151)(113 152)(114 153)(115 154)(116 155)(117 156)(118 157)(119 158)(120 159)
(1 152)(2 153)(3 154)(4 155)(5 156)(6 157)(7 158)(8 159)(9 160)(10 141)(11 142)(12 143)(13 144)(14 145)(15 146)(16 147)(17 148)(18 149)(19 150)(20 151)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 124)(42 125)(43 126)(44 127)(45 128)(46 129)(47 130)(48 131)(49 132)(50 133)(51 134)(52 135)(53 136)(54 137)(55 138)(56 139)(57 140)(58 121)(59 122)(60 123)(81 111)(82 112)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)(91 101)(92 102)(93 103)(94 104)(95 105)(96 106)(97 107)(98 108)(99 109)(100 110)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 142 151)(2 150 143 9)(3 8 144 149)(4 148 145 7)(5 6 146 147)(11 20 152 141)(12 160 153 19)(13 18 154 159)(14 158 155 17)(15 16 156 157)(21 64 71 34)(22 33 72 63)(23 62 73 32)(24 31 74 61)(25 80 75 30)(26 29 76 79)(27 78 77 28)(35 70 65 40)(36 39 66 69)(37 68 67 38)(41 125 134 52)(42 51 135 124)(43 123 136 50)(44 49 137 122)(45 121 138 48)(46 47 139 140)(53 133 126 60)(54 59 127 132)(55 131 128 58)(56 57 129 130)(81 84 101 104)(82 103 102 83)(85 100 105 120)(86 119 106 99)(87 98 107 118)(88 117 108 97)(89 96 109 116)(90 115 110 95)(91 94 111 114)(92 113 112 93)

G:=sub<Sym(160)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,81)(37,82)(38,83)(39,84)(40,85)(61,116)(62,117)(63,118)(64,119)(65,120)(66,101)(67,102)(68,103)(69,104)(70,105)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,113)(79,114)(80,115)(121,158)(122,159)(123,160)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,157), (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,93)(12,94)(13,95)(14,96)(15,97)(16,98)(17,99)(18,100)(19,81)(20,82)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(61,138)(62,139)(63,140)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,136)(80,137)(101,160)(102,141)(103,142)(104,143)(105,144)(106,145)(107,146)(108,147)(109,148)(110,149)(111,150)(112,151)(113,152)(114,153)(115,154)(116,155)(117,156)(118,157)(119,158)(120,159), (1,152)(2,153)(3,154)(4,155)(5,156)(6,157)(7,158)(8,159)(9,160)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,148)(18,149)(19,150)(20,151)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,124)(42,125)(43,126)(44,127)(45,128)(46,129)(47,130)(48,131)(49,132)(50,133)(51,134)(52,135)(53,136)(54,137)(55,138)(56,139)(57,140)(58,121)(59,122)(60,123)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,101)(92,102)(93,103)(94,104)(95,105)(96,106)(97,107)(98,108)(99,109)(100,110), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,142,151)(2,150,143,9)(3,8,144,149)(4,148,145,7)(5,6,146,147)(11,20,152,141)(12,160,153,19)(13,18,154,159)(14,158,155,17)(15,16,156,157)(21,64,71,34)(22,33,72,63)(23,62,73,32)(24,31,74,61)(25,80,75,30)(26,29,76,79)(27,78,77,28)(35,70,65,40)(36,39,66,69)(37,68,67,38)(41,125,134,52)(42,51,135,124)(43,123,136,50)(44,49,137,122)(45,121,138,48)(46,47,139,140)(53,133,126,60)(54,59,127,132)(55,131,128,58)(56,57,129,130)(81,84,101,104)(82,103,102,83)(85,100,105,120)(86,119,106,99)(87,98,107,118)(88,117,108,97)(89,96,109,116)(90,115,110,95)(91,94,111,114)(92,113,112,93)>;

G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,81)(37,82)(38,83)(39,84)(40,85)(61,116)(62,117)(63,118)(64,119)(65,120)(66,101)(67,102)(68,103)(69,104)(70,105)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,113)(79,114)(80,115)(121,158)(122,159)(123,160)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,157), (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,93)(12,94)(13,95)(14,96)(15,97)(16,98)(17,99)(18,100)(19,81)(20,82)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(61,138)(62,139)(63,140)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,136)(80,137)(101,160)(102,141)(103,142)(104,143)(105,144)(106,145)(107,146)(108,147)(109,148)(110,149)(111,150)(112,151)(113,152)(114,153)(115,154)(116,155)(117,156)(118,157)(119,158)(120,159), (1,152)(2,153)(3,154)(4,155)(5,156)(6,157)(7,158)(8,159)(9,160)(10,141)(11,142)(12,143)(13,144)(14,145)(15,146)(16,147)(17,148)(18,149)(19,150)(20,151)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,124)(42,125)(43,126)(44,127)(45,128)(46,129)(47,130)(48,131)(49,132)(50,133)(51,134)(52,135)(53,136)(54,137)(55,138)(56,139)(57,140)(58,121)(59,122)(60,123)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,101)(92,102)(93,103)(94,104)(95,105)(96,106)(97,107)(98,108)(99,109)(100,110), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,142,151)(2,150,143,9)(3,8,144,149)(4,148,145,7)(5,6,146,147)(11,20,152,141)(12,160,153,19)(13,18,154,159)(14,158,155,17)(15,16,156,157)(21,64,71,34)(22,33,72,63)(23,62,73,32)(24,31,74,61)(25,80,75,30)(26,29,76,79)(27,78,77,28)(35,70,65,40)(36,39,66,69)(37,68,67,38)(41,125,134,52)(42,51,135,124)(43,123,136,50)(44,49,137,122)(45,121,138,48)(46,47,139,140)(53,133,126,60)(54,59,127,132)(55,131,128,58)(56,57,129,130)(81,84,101,104)(82,103,102,83)(85,100,105,120)(86,119,106,99)(87,98,107,118)(88,117,108,97)(89,96,109,116)(90,115,110,95)(91,94,111,114)(92,113,112,93) );

G=PermutationGroup([(1,52),(2,53),(3,54),(4,55),(5,56),(6,57),(7,58),(8,59),(9,60),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,86),(22,87),(23,88),(24,89),(25,90),(26,91),(27,92),(28,93),(29,94),(30,95),(31,96),(32,97),(33,98),(34,99),(35,100),(36,81),(37,82),(38,83),(39,84),(40,85),(61,116),(62,117),(63,118),(64,119),(65,120),(66,101),(67,102),(68,103),(69,104),(70,105),(71,106),(72,107),(73,108),(74,109),(75,110),(76,111),(77,112),(78,113),(79,114),(80,115),(121,158),(122,159),(123,160),(124,141),(125,142),(126,143),(127,144),(128,145),(129,146),(130,147),(131,148),(132,149),(133,150),(134,151),(135,152),(136,153),(137,154),(138,155),(139,156),(140,157)], [(1,83),(2,84),(3,85),(4,86),(5,87),(6,88),(7,89),(8,90),(9,91),(10,92),(11,93),(12,94),(13,95),(14,96),(15,97),(16,98),(17,99),(18,100),(19,81),(20,82),(21,55),(22,56),(23,57),(24,58),(25,59),(26,60),(27,41),(28,42),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(61,138),(62,139),(63,140),(64,121),(65,122),(66,123),(67,124),(68,125),(69,126),(70,127),(71,128),(72,129),(73,130),(74,131),(75,132),(76,133),(77,134),(78,135),(79,136),(80,137),(101,160),(102,141),(103,142),(104,143),(105,144),(106,145),(107,146),(108,147),(109,148),(110,149),(111,150),(112,151),(113,152),(114,153),(115,154),(116,155),(117,156),(118,157),(119,158),(120,159)], [(1,152),(2,153),(3,154),(4,155),(5,156),(6,157),(7,158),(8,159),(9,160),(10,141),(11,142),(12,143),(13,144),(14,145),(15,146),(16,147),(17,148),(18,149),(19,150),(20,151),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,124),(42,125),(43,126),(44,127),(45,128),(46,129),(47,130),(48,131),(49,132),(50,133),(51,134),(52,135),(53,136),(54,137),(55,138),(56,139),(57,140),(58,121),(59,122),(60,123),(81,111),(82,112),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120),(91,101),(92,102),(93,103),(94,104),(95,105),(96,106),(97,107),(98,108),(99,109),(100,110)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,142,151),(2,150,143,9),(3,8,144,149),(4,148,145,7),(5,6,146,147),(11,20,152,141),(12,160,153,19),(13,18,154,159),(14,158,155,17),(15,16,156,157),(21,64,71,34),(22,33,72,63),(23,62,73,32),(24,31,74,61),(25,80,75,30),(26,29,76,79),(27,78,77,28),(35,70,65,40),(36,39,66,69),(37,68,67,38),(41,125,134,52),(42,51,135,124),(43,123,136,50),(44,49,137,122),(45,121,138,48),(46,47,139,140),(53,133,126,60),(54,59,127,132),(55,131,128,58),(56,57,129,130),(81,84,101,104),(82,103,102,83),(85,100,105,120),(86,119,106,99),(87,98,107,118),(88,117,108,97),(89,96,109,116),(90,115,110,95),(91,94,111,114),(92,113,112,93)])

Matrix representation G ⊆ GL5(𝔽41)

400000
01000
00100
00010
00001
,
400000
040000
004000
000165
0003125
,
10000
040000
004000
000400
000040
,
10000
01000
00100
000400
000040
,
10000
0173800
033800
0002037
000821
,
400000
024300
0401700
0002027
000821

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,16,31,0,0,0,5,25],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,17,3,0,0,0,38,38,0,0,0,0,0,20,8,0,0,0,37,21],[40,0,0,0,0,0,24,40,0,0,0,3,17,0,0,0,0,0,20,8,0,0,0,27,21] >;

92 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A···4H4I···4N5A5B10A···10AD20A···20AF
order12···22222224···44···45510···1020···20
size11···1222220202···220···20222···22···2

92 irreducible representations

dim11111112222222
type+++++++++++
imageC1C2C2C2C2C2C2D4D5C4○D4D10D10C5⋊D4C4○D20
kernelC2×C23.23D10C2×C10.D4C2×D10⋊C4C23.23D10C2×C23.D5C22×C5⋊D4C23×C20C22×C10C23×C4C2×C10C22×C4C24C23C22
# reps12281114281221632

In GAP, Magma, Sage, TeX

C_2\times C_2^3._{23}D_{10}
% in TeX

G:=Group("C2xC2^3.23D10");
// GroupNames label

G:=SmallGroup(320,1461);
// by ID

G=gap.SmallGroup(320,1461);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,675,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=d,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^9>;
// generators/relations

׿
×
𝔽